
Architecture Exploration and Delay Minimization
Synthesis for SET-Based Programmable Gate Arrays

Chia-Cheng Wu
Department of Computer Science

National Tsing Hua University

Hsinchu, Taiwan

Email: s104062522@m104.nthu.edu.tw

Kung-Han Ho
Institute of Electronics

National Chiao Tung University

Hsinchu, Taiwan

Email: kunghanho@gmail.com

Chun-Yao Wang
Department of Computer Science

National Tsing Hua University

Hsinchu, Taiwan

Email: wcyao@cs.nthu.edu.tw

Juinn-Dar Huang
Department of Electronics Engineering

National Chiao Tung University

Hsinchu, Taiwan

Email: jdhuang@mail.nctu.edu.tw

Abstract—Power consumption has become a primary obstacle
for circuit designs at present. Single-Electron Transistor (SET) at
room temperature has been demonstrated as a promising device
for extending Moore’s law due to its low power consumption.
Since, only a few electrons are involved in the switching process,
the drivability of SETs is ultra-low such that the height of an
SET array is limited to a small number. This paper presents
a delay minimization synthesis flow that decomposes a circuit
into a network of SET Array Blocks (SABs) with a fixed height
and width. The experiments were conducted for different sizes of
SABs over a set of benchmarks. The experimental results showed
that we can have the smallest average Area Delay Product (ADP)
when the height is 5 and the width is 10 of an SAB, which
indicates that such size of SABs is proper to synthesize SET
networks.

Keywords—Single-Electron Transistor (SET); SET Array
Blocks (SAB); delay minimization synthesis flow;

I. INTRODUCTION

As CMOS technology nodes are continuously scaling

down, power consumption has become a primary concern in

electronic system design [27]. To deal with this issue, various

emerging low-power devices have been proposed in recent

years. Among these low-power devices, Single-Electron

Transistor (SET) is considered as one of the promising

candidates. Some demonstrations of SET devices have proved

that SET devices can operate at room temperature with only

a few electrons [22][23][26].

Since only a few electrons are involved in the switching

process, SETs suffer from low transconductance. Therefore,

the traditional CMOS architecture is not applicable to SETs.

To this end, a Binary Decision Diagram (BDD)-based

architecture [2] was proposed as a practical approach to

implement logic functions on SETs [1]. Furthermore, the

BDD of any Boolean function can be used to map onto

This work is supported in part by the Ministry of Science and Technology of
Taiwan under Grant MOST 106-2221-E-007-111-MY3, MOST 103-2221-E-
007-125-MY3, and MEDIATEK Research Center Doctoral Talent Fellowship.

a BDD-based SET array [11][15][16]. A BDD-based SET

array is a hexagonal nanowire network, which is composed

of a set of node devices. Each node device has one entry

branch and two exit branches as shown in Fig. 1(a). Fig.

1(b) illustrates that electrons enter a node device via the

entry branch and pass through either the left or the right exit

branch depending on the control signal of the wrap-gates.

An exit branch is a segment of SET controlled nanowire

and has four operational modes: open, short, active-high,

and active-low. In this hexagonal network, each row of the

network is controlled by the same input variable. Therefore,

a given function represented by BDD can be simply mapped

onto such hexagonal network. The first BDD-based hexagonal

nanowire network has been demonstrated in [16].

Fig. 1. (a) Physical structure. (b) Logic representation of a node device

However, the proposed BDD-based architecture in [16] is

not amendable to functional reconfiguration. Furthermore,

the entire circuit becomes useless if there exists a defective

nanowire segment or any defective SET on it. Fortunately,

a reconfigurable SET array was proposed to deal with

these problems [10]. The automatic synthesis methods of

reconfigurable SET array targeting at area minimization

were proposed in [5][6][25]. Since the height of an SET

257

2018 IEEE Computer Society Annual Symposium on VLSI

2159-3477/18/$31.00 ©2018 IEEE
DOI 10.1109/ISVLSI.2018.00055

array is equal to the number of input variables of the given

Boolean function, minimizing the area of an SET array means

minimizing its width [8][18][19]. A recent work proposed

an area minimization synthesis flow for reconfigurable SET

arrays, which considered two fabrication constraints in the

early stage [3]. The method minimized the number of product

terms, which were extracted from a given Reduced Ordered

Binary Decision Diagram (ROBDD), by dynamically shifting

variables, and modeled the product terms ordering as the

Traveling Salesman Problem (TSP) [4].

The aforementioned SET synthesis algorithms can map a

function onto an SET array. However, there are more than

one hundred inputs in some functions. Since the operations

in SET arrays involve only a few electrons, the height, that

is corresponding to the number of inputs, of an SET array

is limited. The work [20] perceived this issue and conducted

device-level experiments. The experimental results indicated

that the height of an SET array is about 10. This design

consideration issue has been addressed in [12] such that the

height of a synthesized SET Array Block (SAB) was limited

to 10. However, the experimental results in [12] showed that

SABs have various widths with respect to different functions.

On the other hand, the verification method on the synthesized

SET array was proposed in [7]. The defect issue, diagnosis

and mapping for defective SET arrays were also addressed in

[13][14][17] recently.

In this paper, we use the concept of Field Programmable

Gate Arrays (FPGAs) to divide a complex circuit into a

multi-level network consisting of SRAM-based blocks. An

SRAM can be considered as a Lookup Table (LUT). A 32-bit

SRAM, for example, can be considered as a 5-LUT, which

can implement any function within five variables. The limited

number of inputs of each LUT, K, is similar to the limited

height of an SET array. However, the width of an SAB

is also considered as a constant number W. The SABs we

used in this work with K inputs and W width are called (K,

W)-SABs. There are two objectives of this work. The first

one is to develop a delay minimization synthesis algorithm

for decomposing a complex circuit into (K, W)-SABs. The

other objective is to explore the proper parameters, K and

W, for SET-based programmable gate arrays. We conducted

experiments over a set of benchmarks with different sizes of

SABs. The details of the experiments will be shown in Section

IV.

The rest of this paper is organized as follows. In Section II,

we introduce the architecture of reconfigurable SET arrays,

and the background of this work. Section III presents our

synthesis flow. Section IV shows the experimental results. The

concluding remarks are given in Section V.

II. PRELIMINARIES

A. Reconfigurable SET Array

The structure of a reconfigurable SET array is shown in

Fig. 2(a). A reconfigurable SET array consists of three layers,

which are SET device layer, configuration layer, and input

signal layer from the bottom to the top, respectively. The SET

device layer is a hexagonal network that is constructed by

identical SET nodes. The configuration layer determines the

operational mode of each node in an SET array. By providing

different voltage biases, an SET node can be set in three

operational modes: 1) active; 2) open; and 3) short, as shown

in Fig. 2(c). The input signal layer is an interface between

the input signals and the SET nodes. An input signal can

determine whether the corresponding active SET nodes are

ON or OFF. Due to the limitation of the SET array structure,

the SET nodes in the same row are controlled by the same

input signal.

Fig. 2. (a) Architecture of reconfigurable SET arrays. (b) Symmetric fabric
constraint. (c) 3 types of operational modes.

B. Symmetric Fabric Constraint

Symmetric fabric constraint reduces the wiring area of SET

arrays by having an input signal x and its complementary x′

connected to left edges and right edges, or vice versa, of SET

nodes in the same row [10], as illustrated in Fig. 2(b). This

constraint enforces that a pair of left and right edges of a node

need to be one of (high, low), (low, high), (short, short) and

(open, open). If an SET node is in the active operational mode,

the pair of edges of the node can be either (high, low) or (low,

high), which means that an input variable x is connected to

the left (right) edge and the complementary x′ is connected

to the right (left) edge. If an SET node is in the short (open)
operational mode, both edges are short (open).

C. Product-Term-Based Mapping Approach

The product-term-based approach synthesizes SET arrays

for each Primary Output (PO) of a given Boolean function.

The approach configures one path on the SET array for each

product term of a PO without creating any invalid paths. The

mapping rule is to configure high for bit 1, low for bit 0, and

short for don’t care. Fig. 3 shows an example of the mapping

procedure. We follow the mapping rule to configure or to reuse

an edge for each bit of p0 from the top to the bottom of an

SET array. The mapping result is demonstrated in Fig. 3(a).
For mapping p1, the first two configured rows can be reused

since the first two bits of p0 and p1 are the same. Then the path

branches at the coordination of (x, y) = (0, 2), as illustrated

in Fig. 3(b).

258

D. Mapping Flow for SET Network

Since the work [20] brought the issue of height constraint

in the SET array mapping, decomposing a large SET array

into a network of SABs becomes more important. Fig. 4

illustrates the flow of SET network mapping proposed in [12].

It translates a given Boolean circuit that is represented by an

And-Inverter Graph (AIG) into a BDD network, then maps

the network onto an SET network. The mapped SET network

consists of SET arrays with the fixed height but different

widths. The width of each SET array is various with respect

to the corresponding sub-function it mapped.

E. Problem Formulation

Given the AIG representation of a Boolean network and

user-defined parameters K and W, we map the netlist into a

set of (K, W)-SABs such that the depth (delay) of the SABs

is minimized.

Fig. 3. Example of product-term-based mapping procedure. (a) p0. (b)
p0+p1.

Fig. 4. The flow of mapping an SET network in [12].

III. PROPOSED SYNTHESIS ALGORITHM

In this section, we present our delay minimization algorithm

for decomposing a large reconfigurable SET array. To simplify

the measurement of delay in the mapped SET network, we

assume that the delay of each SAB is identical. Therefore,

measuring delay of a mapped SET network is to find the

longest path in the network consisting of SABs. As mentioned

in Section I, the main concept of the proposed synthesis

algorithm is similar to the one targeting LUT-based FPGA.

An LUT-based FPGA flow decomposes a Boolean network

by the cut enumeration [9], and then packs sub-functions into

LUTs. Our synthesis flow is divided into two phases: Phase

1 is to generate a set of cuts for each node from the Primary

Input (PIs) to the POs in the AIG under the height constraint,

and to label the depth and area of every cut and node. The

labeling helps determine the mapping priority of cuts in the

cut set. Phase 2 is to map sub-circuits from the POs to the PIs

to generate the SAB network.

Fig. 5. An example of cut enumeration with K = 3.

A. Phase 1: Cut Generation and Node Labeling

Our algorithm decomposes the given AIG into K-bounded

sub-networks, where the number of fanins in a sub-network

does not exceed K. The cut enumeration [9] generates all K-

feasible cuts for each node in the AIG from the PIs to the POs.

A cut C of a node n is a set of nodes in its transitive fanins

such that any path from a PI node to node n must pass through

at least one node in the cut. A cut is said to be K-feasible if

the size of the cut, which refers to the number of nodes in

the cut, is no more than K. Fig. 5 illustrates an example of

cut enumeration with K = 3. The three cuts, {g}, {e c}, and

{a b c} belong to the node g. The K-feasible cut of any PI

node contains only the PI node itself. For a non-PI node v, we

apply the cut generation function ⊕K on the cut sets a and b
of its fanins to generate a cut as follows:

a ⊕K b = { x ∪ y | x ∈ a, y ∈ b, | x ∪ y | ≤ K}
Since this cut generation follows the topological order of the

network from the PIs to the POs, it guarantees that the cut

sets a and b have been generated before generating the cut set

of node v.

During the cut enumeration, every node will have a label

that contains the node depth D(n) and the node area A(n). For

each cut, we also label the cut depth D(c) and the cut area A(c)
to determine the mapping priority of cuts in the cut set. The

cut depth, D(c), is the largest node depth of this cut, which

is equivalent to the level from the PIs to the cut, as shown in

Eq. (1). The cut area, A(c), is referred to the summation of

node area of nodes in this cut, and it represents the number

of SABs we need when constructing the cut, as shown in Eq.

(2). The node depth of a node n, D(n), is the minimum cut

depth in its cut set plus one, as shown in Eq. (3). The node

area of a node n, A(n), is the cut area of the cut with the

minimal depth in the cut set plus one, as shown in Eq. (4).
For the PI nodes, their delay and area are 0.

D(c) = max
n ∈ cut

{D(n)} (1)

A(c) =
∑

n ∈ cut

{A(n)} (2)

D(n) = min
c ∈ cut setn

{D(c)} + 1 (3)

A(n) = min
c ∈ cut setn with min{D(n)}

{A(c)} + 1 (4)

An example of cut enumeration process with K = 5 is shown

in Fig. 6. The given AIG is illustrated in Fig. 6(a). The nodes a
to f are PIs. The parentheses at the right of nodes represent the

259

Fig. 6. An example of cut enumeration with label.

cut sets of nodes, and the inner parentheses in a parenthesis

are the cuts in the cut set. To generate the cut of a node

n, we put the node n itself into cut set first. Then, use the

aforementioned generation function to generate the complete

cut set. The labels on the top of inner parentheses represent

the cut depth and cut area, (D(c), A(c)), and the labels at

the left of the nodes represent the node depth and node area,

(D(n), A(n)). When labeling the depth and area of a node, we

consider the cut with the minimal cut depth in the set first. If

there are more than one cut having the minimal cut depth in

the set, we choose the cut with the minimal cut area. In Fig.

6(b), we can see that all the cuts in the cut set of node p are

with the same depth. In this case, we choose the cut with the

minimal A(c) to calculate the depth and area of node p since

it takes the minimal number of SABs. Therefore, we find that

the cut {a, b, c, e, o} is the best cut for node p due to its

smallest cut area.

However, when circuits and K become larger, enumerating

all K-feasible cuts is impractical. In our observation, many

enumerated cuts are redundant, which means that the cuts are

useless for mapping a node. Furthermore, these redundant cuts

generate more redundant cuts. Therefore, we apply a priority

cut heuristic [21] to reduce the number of enumerated cuts.

The strategy is to reserve only a small fixed number p, which is

typically five to ten, of “good” K-feasible cuts for each node.

The “good” K-feasible cuts are the cuts that have smaller cut

depths and the smaller cut areas in the cut set. However, there

is a difference between the strategies of priority cut in [21]

and this work. In this work, we keep at most p “good” cuts

for each cut size from 2 to K. Moreover, the trivial cut of node

n, {n}, which consists of the node itself, is always added to

the cut set to ensure that any nodes can be mapped into an

SAB. Then, we keep additional p cuts with the optimal cut

depth plus one for the cuts whose cut size is K according to

the two observations from our early experiments. In the first

observation, the larger the cut size is, the more nodes are likely

to be packed into an SAB. Therefore, we reserve additional p
“good” cuts for the cuts with the cut size of K. In the second

observation, the number of nodes in a cut is similar to other

cuts with the same cut depth. That is, if a cut fails to map its

function onto an SAB with a width W in the second phase,

other cuts with the same depth are very likely to fail as well.

Therefore, instead of keeping all the cuts with the optimal

depth, we choose to retain the cuts with the optimal depth

plus one. For example, if p = 3 and K = 5, we keep at most

three cuts for each cut size from 2 to 4. For the cut size of

1, we only keep one cut, the trivial cut. For the cut size of

5, we keep three cuts with the optimal depth and three other

cuts with the optimal depth plus one. The maximum number

of the enumerated cuts in a cut set in our strategy is K×p+1.

Fig. 7. Overall flow of the proposed synthesis approach.

B. Phase 2: SAB Mapping
In this phase, we transform the given Boolean circuit into

an SET network consisting of (K, W)-SABs. The steps of

SAB mapping are as follows: First, list all PO nodes in L.

Second, choose one node from L for mapping, and sort the

cuts of the chosen node by 1) cut depth, 2) cut area, and 3)
cut size. We first select the cut with the optimal cut depth for

mapping the node, therefore, we can have the mapped SAB

with the minimal delay in the cut set. If there are more than

one cut having the optimal cut depth, we choose the optimal-

depth cut with the minimal cut area for mapping to reduce the

number of SABs. When we have multiple cuts that have the

optimal cut depth and the minimal cut area, we choose the

cut with the largest cut size to pack more nodes in an SAB.

Once we select a cut of the node for mapping, we apply the

SET array synthesis method in [3] to obtain the mapped SAB.

If the mapping width of the SAB is smaller than or equal to

the predetermined W, the mapping is successful. However, if

the mapping width of the SAB is larger than W, we continue

to choose the next highest priority cut for mapping until the

mapping width constraint is satisfied.
In this work, it is guaranteed to map a node onto the SAB

with the width smaller than or equal to W successfully since

260

Fig. 8. Experimental Results. (a) Average number of required SABs. (b) Average utilization of SABs. (c) Average depth. (d) Average area. (e) Average
Area Delay Product (ADP).

our priority cut strategy always keeps the trivial cut. Once a

node is successfully mapped onto an SAB with the chosen cut,

we add all the non-PI nodes, except for the nodes that have

already been mapped, in the cut into the list L. The overall

flow is shown in Fig. 7. The process is not terminated until L
is empty. In the end, we obtain an SET network composed of

mapped (K, W)-SABs.

IV. EXPERIMENTAL RESULTS

We implemented the proposed algorithm in C++ language

and conducted experiments on an Intel Xeon 2.4GHz CPU

platform with 64 GBytes memory. The experiments were

conducted over a set of MCNC [24] and IWLS 2005 [28]

benchmarks represented by AIG. We conducted experiments

for different sizes of (K, W)-SABs, where K is varied from

5 to 12 and W is varied from 10 to 70 at intervals of 5. The

averaged experimental results of this set of benchmarks are

illustrated in Fig. 8, which was drawn with MATLAB.

Fig. 8(a) shows the average number of required SABs with

different sizes. Fig. 8(b) shows the average utilization with

different sizes of SABs. The utilization of an SAB refers to

the ratio of the mapped width with respect to W. For example,

if the mapped width of a sub-function on an SAB is 8, and

the parameter W is 10, the utilization of the SAB is 80%. The

line (1) in Fig. 8(a) indicates the effect of increasing width W
to the average number of SABs with a smaller K of 5. In the

beginning, we found that the average number of required SABs

was greatly reduced when the W became larger. However,

when the W became much larger, the average number of SABs

is almost intact. It indicates that we do not need SABs with

very large widths when K is small since only a few nodes are

packed into an SAB. Furthermore, the line (1) in Fig. 8(b) also

explains that the utilization dramatically dropped when the W
became larger. The line (2) in Fig. 8(a) indicates that the

number of required SABs with a larger K of 12 continuously

decreases when W increases. In Fig. 8(b), the line (2) shows

that the averaged utilization of SABs decreases more gently

than the line (1) with the increase of W. Furthermore, the

averaged utilization of SABs for a large W, which is indicated

by the line (4), is lower than the line (3).
In Fig. 8(c), the lines (1) and (2) indicate that the averaged

depth of SABs becomes smaller when the W becomes larger.

This means that an SAB with a larger width can accommodate

a larger sub-function. However, this is not obvious anymore

when the width of SABs is too large. The line (3) also

indicates that the averaged depth of SET networks becomes

smaller when K increases. This is because more nodes are

packed into an SAB with a larger K.

We observed that using SABs with larger parameters K and

W leads to a smaller averaged number of required SABs for

mapping in an SET network. However, the lines (1) and (2)
in Fig. 8(d) indicate that the averaged mapping area of the

SET network with larger size of SABs is oppositely larger.

The minimum averaged area occurs when the parameter K is

5 and W is 10.

For the averaged Area Delay Product (ADP), which is

calculated as area×depth, with different sizes of SABs in Fig.

8(e) indicates the minimum ADP occurs when K is 5 and W
is 10, and a similar ADP occurs when K is 7 and W is 10.

TABLE I shows the detailed experimental results with (5,

10) and (7, 10) SABs in two columns. The last row shows

the averaged results among these benchmarks. It indicates that

the averaged area of the SET networks with (5, 10) SABs is

smaller than the SET networks with (7, 10) but the averaged

depth of the SET networks with (5, 10) SABs is larger than

the SET networks with (7, 10). Therefore, the two averaged

ADP of the two experiments with (5, 10) and (7, 10) SABs

are similar.

V. CONCLUSION

In this paper, we propose the first delay minimization

synthesis algorithm decomposing and mapping a Boolean

circuit into a set of fixed size (K, W)-SABs. The proposed

method consists of two phases that guarantee the mapped SET

SABs meet the predefined height and width. The experimental

results suggest that smaller parameters K and W lead to

261

TABLE I
The experimental results with (K, W) = (5, 10), and (K, W) = (7, 10) SABs.

Bench.
K = 5, W = 10 K = 7, W = 10

|SAB| utiliz. (%) depth area ADP T(s) |SAB| utiliz. (%) depth area ADP T(s)

alu2 184 63.1 9 9200 82800 0.94 159 63.6 6 11130 66780 2.74

alu4 345 64.6 10 17250 172500 1.95 333 65.9 7 23310 163170 5.75

apex6 291 63.8 5 14550 72750 1.28 256 67.1 4 17920 71680 2.69

apex7 74 59.5 4 3700 14800 0.27 66 65.2 3 4620 13860 0.57

b9 42 56.7 3 2100 6300 0.16 38 61.1 3 2660 7980 0.29

c8 38 65.5 3 1900 5700 0.20 34 62.4 3 2380 7140 0.31

c17 3 56.7 2 150 300 0.02 3 56.7 2 210 420 <0.01

cc 23 56.1 2 1150 2300 0.09 23 47.8 2 1610 3220 0.17

cht 45 72.9 2 2250 4500 0.17 38 77.4 2 2660 5320 0.12

cm85 16 56.2 3 800 2400 0.07 17 57.1 2 1190 2380 0.12

cm138 11 71.8 2 550 1100 0.09 11 71.8 2 770 1540 0.14

cm151 8 70.0 3 400 1200 0.04 9 63.3 2 630 1260 0.13

cm162 14 65.0 3 700 2100 0.05 14 54.3 2 980 1960 0.15

cm163 13 56.2 2 650 1300 0.07 13 72.3 2 910 1820 0.14

cmb 19 54.2 3 950 2850 0.06 16 60.0 3 1120 3360 0.14

count 43 67.2 5 2150 10750 0.29 44 73.9 4 3080 12320 0.57

cu 19 52.6 3 950 2850 0.05 17 55.3 2 1190 2380 0.06

example2 121 53.9 3 6050 18150 0.53 115 59.6 3 8050 24150 1.49

frg1 29 64.0 5 1450 7250 0.11 31 57.1 4 2170 8680 0.25

frg2 312 65.2 4 15600 62400 1.37 294 68.6 4 20580 82320 4.53

i1 20 44.0 3 1000 3000 0.05 17 45.3 2 1190 2380 0.04

i2c 402 59.5 5 20100 100500 1.75 375 65.9 4 26250 100500 3.65

i8 380 71.0 4 19000 76000 2.68 398 77.3 3 27860 83580 11.12

lal 35 54.6 3 1750 5250 0.19 32 60.0 3 3350 6720 0.46

ldd 42 59.0 3 2100 6300 0.31 39 58.7 2 2730 5460 0.47

pcie 23 57.7 3 1150 3450 0.10 16 70.6 2 1120 2240 0.11

pcier8 37 55.9 4 1850 7400 0.15 34 60.3 3 2380 7140 0.47

pm1 20 47.5 2 1000 2000 0.06 19 51.6 2 1330 2660 0.11

Avg. 93.2 60.2 3.7 4658.9 24221.4 0.47 87.9 62.5 3.0 6192.1 24729.3 1.31

smaller ADP. Furthermore, we also showed that the proposed

priority cut strategy makes our algorithm very efficient.

REFERENCES

[1] N. Asahi et al., “Single-electron logic device based on the binary
decision diagram,” IEEE Trans. Elec. Dev., 1997.

[2] R. E. Bryant, “Graph-based algorithms for Boolean function
manipulation,” IEEE Trans. Computers, 1986.

[3] Y.-H. Chen et al., “Area minimization synthesis for reconfigurable
single-electron transistor arrays with fabrication constraints,” ACM J.
Emerg. Tech. Com. Syst., 2016.

[4] Y.-H. Chen et al., “ROBDD-based area minimization synthesis for
reconfigurable single-electron transistor arrays,” in Proc. Int. Symp. VLSI
Design, Auto. Test, 2015.

[5] Y.-C. Chen et al., “Automated Mapping for Reconfigurable Single-
Electron Transistor Arrays”, in Proc. Design Auto. Conference, 2011.

[6] Y.-C. Chen et al., “A Synthesis Algorithm for Recongurable Single-
electron Transistor Arrays,” ACM J. Emer. Tech. Comp. Syst., 2013.

[7] Y.-C. Chen et al., “Verification of Reconfigurable Binary Decision
Diagram-based Single-Electron Transistor Arrays,” IEEE Trans. CAD
of Int. Circuits and Syst., 2013.

[8] C.-E. Chiang et al., “On reconfigurable single-electron transistor arrays
synthesis using reordering techniques,” in Proc. Des. Auto. and Test in
Europe, 2013.

[9] J. Cong et al., “Cut ranking and pruning: Enabling a general and efficient
FPGA mapping solution.” in Proc. ACM/SIGDA S. Int. S. FPGA, 1999.

[10] S. Eachempati et al., “Reconfigurable Bdd-based Quantum Circuits,” in
Proc. Int. Symp. Nanosc. Archit., 2008.

[11] H. Hasegawa et al., “Hexagonal binary decision diagram quantum logic
circuits using Schottky in-plane and wrap gate control of GaAs and
InGaAs nanowires,” Phys. E, Low-dimensional Syst. Nanostruct., 2001.

[12] C.-H. Ho et al., “Area-aware decomposition for single-electron transistor
arrays,” ACM Trans. Des. Auto. Elec. Syst., 2016.

[13] C.-Y. Huang et al., “A Defect-aware Approach for Mapping
Reconfigurable Single-Electron Transistor Arrays,” in Proc. Asia and
South Pacific Design Automation Conference., 2015.

[14] C.-Y. Huang et al., “Diagnosis and Synthesis for Defective
Reconfigurable Single-Electron Transistor Arrays,” IEEE Trans. VLSI
Syst., 2016.

[15] S. Kasai et al., “A single electron binary-decision-diagram quantum
logic circuit based on Schottky wrap gate control of a GaAs nanowire
hexagon,” Elec. Device Lett., 2002.

[16] S. Kasai et al., “Fabrication of GaAs-based integrated 2-bit half and full
adders by novel hexagonal BDD quantum circuit approach,” in Proc. Int.
Symp. Semi. Dev. Res., 2001.

[17] Y.-J. Li et al., “Dynamic Diagnosis for Defective Reconfigurable Single-
Electron Transistor Arrays,” IEEE Trans. VLSI Syst., 2017.

[18] C.-W. Liu et al., “Width Minimization in the Single-Electron Transistor
Array Synthesis,” in Proc. Des., Auto. and Test in Europe, 2014.

[19] C.-W. Liu et al., “Synthesis for width minimization in the single-electron
transistor array,” IEEE Trans. VLSI Syst., 2015.

[20] L. Liu et al., “A reconfigurable low-power BDD logic architecture using
ferroelectric single-electron transistors,” IEEE Trans. Elec. Device, 2015.

[21] A. Mishchenko et al., “Combinational and sequential mapping with
priority cuts,” IEEE Trans. Computer-Aided Design, 2007.

[22] H. W. Ch. Postma et al., “Carbon nanotube single-electron transistors
at room temperature,” Science, 2001.

[23] Y.-T. Tan et al., “Room temperature nanocrystalline silicon single-
electron transistors,” J. Appl. Phys., 2003.

[24] S. Yang, “Logic Synthesis and Optimization Benchmarks, Version 3.0,”
Tech. Report, Microelectronics Center of North Carolina, 1991.

[25] Z. Zhao et al., “BDD-Based Synthesis of Reconfigurable Single-Electron
Transistor Array,” in Proc. Int. Conference CAD, 2014.

[26] L. Zhuang et al., “Silicon single-electron quantum-dot transistor switch
operating at room temperature,” Appl. Phys. Lett., 1998.

[27] Int. Tech. Road. Semi., Semiconduc. Industry Association, 2006.
[28] IWLS 2005 Benchmarks. (June 2005). Retrieved March, 2015 [Online].

Available: http://iwls.org/iwls2005/benchmarks.htm

262

